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Abstract

Propagation of plane harmonic thermoelastic waves in a thin, flat, infinite homogeneous, transversely isotropic plate
of finite width is studied, in the context of generalized theory of thermoelasticity. Green and Lindsay (GL) theory, in
which, thermal and thermo-mechanical relaxations are governed by two different time constants, is selected for the
study. The frequency equations corresponding to the symmetric and antisymmetric modes of vibration of the plate are
obtained, and some limiting and special cases of the frequency equations are then discussed. The results have been
verified numerically and are represented graphically. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The theory to include the effect of temperature change, known as the theory of thermoelasticity, has been
well established. According to the theory, the temperature field is coupled with the elastic strain field. The
classical theory of thermoelasticity predicts infinite speed of transportation, which contradicts the physical
facts. Lord and Shulman (1967) (referred to as the LS theory) and Green and Lindsay (1972) (referred to as
the GL theory) extended the coupled theory of thermoelasticity by introducing the thermal relaxation time
in the constitutive equations. This new theory, which eliminates the paradox of infinite velocity of heat
propagation, is called generalized theory of thermoelasticity. This generalized thermoelasticity theory that
admits finite speed for the propagation of thermoelastic disturbances has received much attention in recent
years. The works of Chandrasekharaiah (1986), Ignaczak (1989), Green and Naghdi (1991, 1992), and
Hetnarski and Ignaczak (1994) contain more detailed discussions on this phenomenon. The LS model
introduces a single time constant to dictate the relaxation of thermal propagation, as well as the rate of
change of strain rate and the rate of change of heat generation. In the GL theory, on the other hand, the
thermal and thermo-mechanical relaxations are governed by two different time constants.
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Deresiewicz (1975) considered the propagation of waves in thermoelastic plates under plain strain state.
The propagation of thermoelastic waves in a plate under plane stress by using generalized theories of
thermoelasticity has been studied by Chandrasekheraiah and Srinantiah (1984, 1985), Massalas (1986).
Here, we mention that several authors Puri (1973, 1975), Agarwal (1978, 1979), Agarwal (1979), Tao and
Prevost (1984), Massalas and Kalpakidis (1987b), and Daimaruya and Naitoh (1987) have considered the
propagation of generalized thermoelastic waves in plates of isotropic media. Massalas and Kalpakidis
(1987a) used the generalized theory of Lord and Shulman to study the characteristics of wave motion in a
thin plate under plane stress state with mixed boundary conditions. They used Lamé’s potentials to derive
the frequency equation. Verma and Hasebe (1999) studied the propagation of generalized thermoelastic
vibrations in infinite plates in the context of generalized thermoelasticity.

Banerjee and Pao (1974) extended this theory to anisotropic heat conducting elastic materials. Dhaliwal
and Sherief (1980) treated the problem in more systematic manner. They derived governing field equations
of generalized thermoelastic media and proved that these equations have a unique solution. Sharma and
Sidhu (1986) discussed the propagation of plane harmonic waves in a homogeneous anisotropic generalized
thermoelastic solid. Chadwick and Seet (1970), and Chadwick (1979) investigated the thermoelastic wave
propagation in transversely isotropic and homogeneous anisotropic heat conducting elastic materials, re-
spectively.

In this paper, we investigate the propagation of plane harmonic waves in an infinite homogeneous
transversely isotropic plate of thickness 2d in the context of Green and Lindsay (1972) generalized theory of
thermoelasticity. The frequency equations corresponding to the symmetric and antisymmetric thermoelastic
modes of vibration are obtained and discussed for heat conducting thermoelastic plate, and some limiting
cases of the frequency equations are then discussed. Relevant results of previous investigations are deduced
as special cases. The results have been verified numerically and are represented graphically.

2. Formulation

We consider an infinite, homogeneous transversely isotropic, thermally conducting elastic plate at
uniform temperature 7p in the undisturbed state having thickness 2d. Let the faces of the plate be the planes
z = =+d, referred to a rectangular set of Cartesian axes O(x,y,z). We choose x-axis in the direction of the
propagation of waves so that all particles on a line parallel to y-axis are equally displaced. Therefore all the
field quantities will be independent of y co-ordinate. The motion is supposed to take place in two di-
mensions (x,z). Here u, w are the displacements of a point in the x, z directions respectively. In linear
generalized theory of thermoelasticity, the governing fields equations for the temperature T'(x,z,¢) and the
displacement vector u(x,z,¢) = (u,0,w) in the absence of the body forces and heat sources (Green and
Lindsay, 1972) are given by

Clill o + Caglz + (€13 + caa)w: — pit = B (T +uT),, (1)

(€13 + caa)t s + CaaW sy + 33w, — piw = B4(T + TIT),27 (2)

KT+ K3 Tee = pCe(T + 10T) = To[By (i)  + B3 () ], (3)
where

By = (cin +cn)u +cizos; By = 2enon + ci3on; 4)

¢;; are the elastic parameters; p is the density of the medium; C., 79 and 7, are the specific heat at constant
strain, thermal and thermo-mechanical relaxations times respectively; K, K3 and oy, o3 are respectively the
coefficients of thermal conductivities and linear thermal expansions along and perpendicular to the axis of
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symmetry. The comma notation is used for spatial derivatives and superposed dot denotes time differen-
tiation.
We define the following dimensionless quantities

2 3 3
V1 Uy v v p vy p T
X=—x, =—z =2t w=—1I_u w=—t_w T=—,
ki ky k kip\ To ki By To Ty
2 2 1
«_ U « U _ _ Ca4 _C13 Tt aCu
To—k—‘fm Tl—k—Tb o =—, 2= 5 G=—",
1 1 11 C11 11
2 2
_ = BTt c
110 2 P
K:K3/K1’ ﬁ:ﬁ3/ﬁla & = 2 C = ) (5)
pCevy cu

where vy = (¢1;/ p)l/ 2 is the velocity of compressional waves and k; = K /pC. is the thermal diffusivity in the
x-direction. Here ¢, is the thermoelastic coupling constant and t;, tj are the thermal relaxations constant.

Introducing the above quantities (5) in Egs. (1)—(3), after suppressing the * and using superposed dot for
time differentiation, we obtain

u,xx + CZ“,ZZ + C3W,xz - M = (T + ! T),x’ (6)
C3U &, + CoW xx + CiWzz — W= B(T + TlT),Zv (7)
T+ KT — (T +w00) = (i), + B(W) . (®)

The stresses and temperature gradient relevant to our problem in the plate are

. = [(es — eux+eaw, — BT+ 1T AT, (9)
Tx = ﬂlTOCZ(u,z + W,X)? (10)
or

For a plane harmonic wave traveling in the x-direction, the solutions u, w, and T of Egs. (6)—(8) take the
form

u = f(z) explié(x — ct)], (12)
w = g(z) exp[i&(x — ct)], (13)
T = h(z) explié(x — c1)], (14)

where ¢(= w/¢) and & are phase velocity and wave number respectively; w is the circular frequency, and
i =+/—1. Substituting for u, w, and T from Egs. (12)-(14) into Egs. (6)-(8), we get

(2D? — & + EA)f +iéesDg — Ectgh = 0, (15a)
iéesDf + (1D — & + EP)g +iéctgpDh = 0, (15b)
Eecf —iéce pDg — (KD* — & 4+ 1&)h =0, (15¢)

where
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d i i
i T="1 + 7 6 =11 + Z (15d)

The solution to Egs. (15a)—(15d) is

f(z) = Prexp(—Esiz) + Pyexp(—E&saz) + Prexp(—Essz) + Q) exp(Esiz) + O exp(Esyz) + O; exp(Esaz),

(16a)
g(z) = m Py exp(—Esiz) + maPs exp(—Esaz) + maPs exp(—Essz) — m O exp(Esiz) — maOs exp(Esaz)
— m3Qs exp(&ssz), (16b)
h(z) = E[11 Py exp(—Es1z) + [Py exp(—Esaz) + 3P exp(—Essz) + 1,0 exp(&s)z)
+ L0y exp(&sz) 4 1305 exp(Essz)], (16c)

where

 [Bleas; + = 1) +asls;
M ReB—a) e (17a)

[(c18? + * — 1) —icys;m)]
[, = ! 17b
J fC'CG ’ ( )

and P;, O; (j = 1,2, 3) are arbitrary constants, and sy, s,, and s3 are the roots of the equation

S6+A154+A2S2+A3 :0, (18)
where
A; = —[Key(er — )+ el — ‘L'Cz) +Key (1 — cz) —Kc% — slczﬁzrccz]/A,

Ay = [{K(cy — ) +er(l —wc?) — 1162 (1 — ) — e3(1 — ) + ea(ea — A)(1 — c?)
+ &1{2c3Brec? — 116}/ 4,
Ay = [—(cy — A1 = 1A (1 = ) — g16¢7]]/ 4,

A= EC]CZ.

The displacements and temperature to the plate are thus

u = [Py exp(—¢Esiz) + Pyexp(—&soz) + Py exp(—Essz) + Q) exp(Esiz) + O exp(Esyz)
+ O exp(&s;z)] explil(x — ct)], (19a)

w = [m Py exp(—&s1z) + myPs exp(—&soz) + myP; exp(—Essz) — my Q) exp(&s1z) — myQ; exp(Esaz)
— m3Q5 exp(&ssz)] explié(x — ct)], (19b)

T = f[l]P] exp(—éslz) + LP exp(—fszz) + 3P eXp(—§S3Z) + l]Q] GXp(fﬁZ) + lez 6Xp(fS2Z)
+ 1305 exp(&szz)] explié(x — ct)]. (19¢)
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3. Boundary conditions

The boundary conditions are that stresses and temperature gradient on the surfaces of the plate should
vanish. Hence for all x and ¢,
T, =T, =1,=0 onz==£d (20)

Making use of the boundary conditions (20) and bearing in mind the relations (9), (10), (11), and (19), we
obtain a system of six algebraic equations involving the arbitrary constants P, P, P;, O, O, and 0Os:

NE

(iF — cimys; — Bly) (P! + 0e™) = 0, (21a)
1

~.
Il

NE

(im; — s;)(Pe™*! — 0,e™) = 0, (21b)
1

~.
I

NE

(~ 1) (Pe™ — Q™) =0, 21e)
1

~.
Il

NE

(iF — cimys; — ;) (P + Qe ) = 0, (21d)
1

.
I

NE

(im; —5;) (P — Qje™*") = 0, (21e)
1

~.
Il

(=15 (P! — 0je™=%) = 0, (21f)

NE

1

.
Il

where F = ¢3 — ¢».

4. Frequency equation

In order that the six boundary conditions be satisfied simultaneously the determinant of the coefficients
of the arbitrary constants in Egs. (21a)—(21f) must vanish. This gives an equation for the frequency of the
plate oscillations. The frequency equation is found to factorize into two factors, each of which yields the
equations

D\ G, coth(&s1d) — D2G, coth(Esyd) + D3 G coth(Essd) =0 (22a)
and

D, G, tanh(&sd) — D,G, tanh(&syd) + D3Gs tanh(Es;d) = 0, (22b)
where

D; =iF —cym;s; — Bl;, (23)

G =12y — Y2, Gy=YZ3-Y:Z,, G3=YZ,— Y7, (24)
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Y, = im_/- =85, Zy=—ls;, j=1,2,3, (25)

m; and [; are given in Egs. (17a) and (17b).

These are the period equations which correspond to the symmetric and antisymmetric motion of the
plate with respect to the medial plane z = 0. It can be shown that Eq. (22a) corresponds to the symmetric
motion and Eq. (22b) corresponds to the antisymmetric motion.

The predictions from various theories can be obtained from Egs. (22a) and (22b) as special cases:

o Ift=15=0, Egs. (22a) and (22b) become the frequency equations of classical coupled thermoelasticity.

o Ift =15 +#0,Eqgs. (22a) and (22b) become the frequency equations of the LS theory of generalized ther-
moelasticity Verma and Hasebe (in press).

e Ifg =0, Egs. (22a) and (22b) become the frequency equations of uncoupled generalized thermoelasticity
Abubakar (1962).

4.1. Isotropic case

If we take
ci=cp3=24+2u cu=p K =K =K, (26)
u=o03=0, Bi=p=0Ci+20u, (27)

the above Egs. (22a) and (22b) reduce to the corresponding forms for an isotropic body with Lamé’s
parameters A, y; thermal conductivity K, and the coefficient of linear thermal expansion ¢. In this case, if
T =16 # 0, Egs. (22a) and (22b) become the frequency equations of LS theory of generalized thermo-
elasticity, which has been discussed by Verma and Hasebe (1999). Massalas and Kalpakidis (1987a) have
derived and discussed the frequency equation for thin isotropic plate of infinite length in the context of
LS theory. They have studied the frequency equations under mixed boundary conditions and for iso-
thermal and insulated edges. Further, with proper choice of parameters and boundary conditions, fre-
quency Egs. (22a) and (22b) agree with those obtained by Massalas and Kalpakidis (1987a) and Massalas
(1986) (cf. Egs. (26) and (27)) for symmetrical and antisymmetrical motions respectively, about the plane of
symmetry of the plate. The phase velocity and attenuation constant (damping coefficient) of quasi-thermal
mode (Fig. 1, mode 2) when ¢ — oo, approach finite values, which is in agreement with Massalas and
Kalpakidis (1987a) in the case of mixed boundary conditions and for insulated edges, instead of infinite
ones predicted by coupled thermoelasticity Deresiewicz (1957). In the first mode of antisymmetric motions
(in Fig. 1), the phase velocity increases monotonically with increasing wave number values ¢ from ¢ = 0 at
& =0 to ¢ = cr (Rayleigh waves) at ¢ = oo, which is characteristic of flexural waves. The results obtained
for flexural mode (first mode) are in agreement with the corresponding results obtained by Ewing et al.
(1957).

The discussion of transcendental Eqs. (22a) and (22b) in general is difficult; we therefore, consider the
results for some limiting cases.

5. Symmetric modes

For waves long compared with the thickness 2d of the plate, &d is small and consequently &dsy, ds, and
&ds; may be assumed small as long as c is finite. Hence the hyperbolic tangent functions can be replaced by
their arguments and from Eq. (22b) we then obtain

(S% — S%)(S% — S%)(S% — S%)[F11H2A3 — F33H3 — F22H1A3 — ﬂlH3A2 — F‘22H3A1] = 0, (28)
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Fig. 1. Dispersion curves for antisymmetric and symmetric modes for aluminum material.

where

Fiy = (ef —en)eafler — ez) = B,

Fn = (esf— 1) = Der — e3Pl + 2 — e2) — (¢ — Do,

Fiy = (& = 1)'Bl(esf = 1) = B = 23 B(* = 1) = [((* = DB+ e3) (€ — )],
H, = cf(c:f — 1),

Hy = [(esp —e){B(c = 1) +ea(1 = P},

Hy = B(Cz - 1)[(C3B —c1)— (e — Cz)] —(e3 — Cz)(62 — ).
Hence Eq. (28) is cither

8535
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(s = 53)(s = 3)(s7 =) =0 (35a)
or

Fi1HyAs — FsHy — FpHAs — FiiHzAy — FoHzA = 0. (35b)

If 57 =53, 53 =s3, 53 =7 the form of the original solution assumed, Eqgs. (19a)-(19¢) cannot satisfy the

boundary conditions. Hence Eq. (35b) holds. This equation gives the phase velocity of long compressional
or plate waves in generalized theory of thermoelasticity.
On using the isotropic relations Egs. (26) and (27), expression (35b) reduces to

2

[2 _22] [1 -t +eat6)] = 4[(Pt = 1)(® — 1) — erc’zg). (36)

Eq. (36) gives the phase velocity of long compressional or plate waves in generalized theory of thermo-
elasticity. In the framework of the classical elasticity (¢ = 0), Eq. (36) reduces to

e 432<1 f—j) (37)

which agrees with Ewing et al. (1957).
For very short waves and ¢ such that sy, s, and s3 are real, £d is large and the hyperbolic functions tend to
unity. Hence Eq. (22b) becomes
(51 —82) (52 — 83) (53 — 51)[(81 + 82 + 83) (FinHzAs — FiHhAs + FooH Az + FoyH3 Ay + FisH;)
+ 515083{ (5182 + 8253 + 5381 ) (F11 H3 + FooHy — F3Hy) + (FiH1As + FoyH\ Ay + FoHo A
+ FypHs + F3H,)}] = 0. (38a)

Evidently (s; — s2)(s2 — s3)(s3 — s1) is a factor. Therefore, from Eq. (38a) we obtain

(14 52+ 53)(FiH3A4; — FlHLAs + FoH Az + FoH3 Ay + FisHz) + 515053{ (5152 + 5283 + 5351)
X (F\\H; + FnH, — F3H))+(Fy H\ A3 + FyH Ay + FoHo Ay + FoHs + FHy)} =0, (38b)
where s1, s, and s3 are roots of Eq. (18).
Eq. (38b) can be identified as the phase velocity equation for Rayleigh waves in transversely isotropic

half-space.
On using the isotropic relations (26) and (27) expression (38b) becomes

[—(1+ )2 + 57 + 519 + & — 1} + ds15583(s1 + 52)] = 0. (39a)

Eq. (39a) can be identified as the phase velocity equation for Rayleigh waves in isotropic half-space. This is
in agreement with the corresponding result of Nayfeh and Nasser (1971). In the framework of the classical
elasticity (¢; = 0), Eq. (39a) reduces to

2-2] “usa-e(1-2), (ob)

This is in agreement with the corresponding result of Nayfeh and Nasser (1971).
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6. Antisymmetric modes

For waves long compared with thickness of the plate, s, s;, and s3 are real, we may replace the hy-
perbolic functions by the approximation

tanhx =~ x — x*/3.

After some algebraic transformation and reductions, and neglecting O[¢d]® we obtain
02
(S% - S%)(S% - S%)(Sg - S%)[(F'BHI - F22H2 - FllHS) - % (E1H1A3 + F33H2 +FzzH1A2 + F'33H1A1

+ FH;)] = 0. (40)

Hence either

(57— 53)(s3 = s3)(s3 —87) =0 (41a)
or
2
(FsH, — FoH, — F1 H;) — % (Fi\H\As + FysHy + FoH\ Ay + FsH\ Ay + FoHz) = 0, (41b)
where y = &d.

Eq. (41a) cannot satisfy the boundary conditions. Hence Eq. (41b) holds. On solving Eq. (41b) for a
crystal of zinc, we note that the phase velocity decreases as the wavelength increases (Fig. 2). Therefore the
Eq. (41D) is the dispersion equation of long flexural waves in generalized thermoelasticity.

Using the isotropic relations (26) and (27) Eq. (41b) reduces to

S a8 [(02_1)<1+C_2> _:_2(02_1)} (41c)

C 3 C Cy

which agrees with Verma and Hasebe (1999).

Phase Velocity

037

0 1 2 3 4 5 6 7 8 9
Wavelength

Fig. 2. Dispersion curves for antisymmetric modes of long flexural waves for a crystal of zinc (—: mode 1, ---: mode 2, — mode 3 —- —
mode 4).
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For waves short compared with the thickness of the plate, that is ¢d — oo and ¢ such that sy, s, and s3
are real, Eq. (22a) reduces to Rayleigh equation (39b) and the propagation degenerates to Rayleigh waves
associated with both free surfaces of the plate in generalized thermoelasticity.

7. Thermoelastic surface waves speed determination
7.1. Wave propagates in an arbitrary direction

In order to have a surface wave, the roots s? (i = 1,2,3), of Eq. (18) must be either negative (so the
square roots are pure imaginary) or complex number; this ensures that superposition of partial waves has
the property of exponential decay. There are two cases:

(i) s?, i =1, 2, 3 all are negative;
(ii) s7 is negative s3 = s3°, are complex conjugates (* means complex conjugate).

For case (i), as d — oo, {tanh(&s;d) £, (1), so Egs. (22a) and (22b) reduces to
DGy — D,G, + D3G; = 0. (42)
For case (i), d — oo, {tanh(&s;d)}*" — £1 and if 2 = p + iq, s2 = p — iq, (¢ > 0) then {tanh(&s,d)}* —
+1 and {tanh(&s;d)}™" — —(%1), so, we have from Eqs. (22a) and (22b)
D1G1 — D2G2 —D3G3 =0. (43)

Egs. (42) and (43) can be solved for the thermoelastic surface wave velocity in the context of generalized
thermoelasticity.

7.2. Wave propagation in principal direction (say x direction)

Similar to the situation described in Section 7.1, we have two cases:

(i) s?, i = 2, 3 are negative;
(i) s3 = 53, are complex conjugates.

Eq. (22a) and (22b) become Eq. (42), which can be simplified to find the thermoelastic surface
waves.

7.2.1. Classical case

This case corresponds to the situation when the strain and temperature fields are not coupled with
each other. In this case the thermo-mechanical coupling constant ¢; is identically zero. Eq. (18) reduces
to

SPK+tt—1=0 (44a)
and

cie8t + (3 — 3+ et +eic? —e))s* + (ea — ) (1 = ) = 0. (44b)
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Eq. (44a) gives us s> = [1 + c2(19 + (i/w&))]/K , which defines the speed and the attenuation constant for
the thermal wave. Clearly this is influenced by the thermal relaxation time 1.

Eq. (44b) is exactly the same equation which has been obtained and discussed by Abubakar (1962),
which gives two period equations, for the symmetric and antisymmetric modes, respectively, for a free
homogeneous transversely isotropic plate of thickness ‘2d’.

Further, if we define 7> = »?/{* then Egs. (42) and (43) with Eq. (44b) after some algebraic manipu-
lations reduces to

[c1 — (3 — &) — eV (ea — V) — crexaV*(1 = V) = 0. (45)

This equation is the same as Stoneley’s (1943) phase velocity equation for Rayleigh waves in a transversely
isotropic half-space, and reduces to the equation giving the velocity of Rayleigh waves in the isotropic case.
Stoneley (1943) proved that this equation has only one real value for ¥ in the range

0<V <ec. (46)

For thermoelastic isotropic material in the context of generalized thermoelasticity, the Egs. (42) and (43)
reduces to

(1-— sg)z{s% + 824515+ 1 =} — dsis053(s1 +53) = 0. (47)

Eq. (47) is the same as obtained and discussed by Nayfeh and Nasser (1971) and Sharma (1985), and Eq.
(45) reduces to Eq. (39b).

This reveals that the elastic waves will be non-dispersive in this case, which is in agreement with Stoneley
(1943) in the non-dimensional case.

7.2.2. Case of coupled thermoelasticity

This case corresponds to no thermal relaxation time, i.e. 1o = 0 and hence T = i/w. In case isotropic
materials, proceeding on the same lines, we again arrived at frequency equations of the form (39b). This is
again in agreement with the corresponding result obtained by Chadwick (1960), Lockett (1985) and Sharma
(1985). If we use the condition w < 1, then Eq. (45) reduces to

2\ 5
(l—|—81)(2——2) :16{(l—|—81)—C2}<1——2). (48)
) )
When ¢, = 0, Eq. (48) becomes Eq. (47) and for ¢ # 0 it corresponds to the result obtained by Sharma
(1985).

8. Numerical discussion and conclusions

In general the waves are dispersive; the manner in which the long and short wavelength limits are
connected requires a numerical solution of the Egs. (22a) and (22b) is required. Moreover, the value of ¢
which make s;, s, and s3 imaginary, the hyperbolic functions become periodic and so an infinite number of
higher modes exists. Computation for the symmetric and antisymmetric modes have been carried out for a
single crystal of zinc, for which, the basic physical data are, (Chadwick, 1960)

c1 =0.3851, ¢, =0.2365 c3;=05485, f=08991, K=1, ¢ =0.0221.
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Dispersion Curves (Antisymmetric Modes)

257 -

Phase Velocity (Non-dimensional)

1 1 1
0 0.7 14 2.1 238 3.5

‘Wavenumber (Non-dimensional)

(b)

Dispersion Curves (Symmetric Modes)

25T - N

Phase Velocity (Non-dimensional)

K model

Wavenumber (Non-dimensional)

Fig. 3. Variation of phase velocity with wavenumber for the six lowest modes in GL theory of generalized thermoelasticity with
T = 002, Top — 0.01.

The results for the symmetric and antisymmetric vibrations (lowest six modes) are shown in Figs. 3-5 for
different values of thermal-mechanical relaxation time 7;, and thermal relaxations time 7,

7, =0.02, 10 =0.01, T_‘ =2 (Fig. 3),
0
1, =0.025, 7o =0.02, z—lz 1.25 (Fig. 4),
0
1, =0.027, 1=0025 =108 (Fig 5).
To

Dispersion curves in the forms of variations of phase velocity (dimensionless) with wave number (di-
mensionless) are constructed at different values of thermal and thermo-mechanical relaxation times
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Fig. 4. Variation of phase velocity with wavenumber for the six lowest modes in GL theory of generalized thermoelasticity with
71 = 0.025, 79 = 0.02.

for crystal of zinc. At zero wave number limit, each figure display three wave speeds corresponding to
quasi-longitudinal, quasi-transverse and quasi-thermal. It is obvious that the largest value corresponds to
the quasi-longitudinal mode. As & increases, other higher modes appear in both cases (antisymmetric and
symmetric). One of these seems to be associated with rapid change in the slope of the mode. Lower modes
are found to influenced by the thermal relaxation times at low values of wave number both in symmetric
and antisymmetric modes, while in higher modes, change is observed at high values of wave number. Figs.
3-5, show the variations of phase velocity with wave number for antisymmetric modes and Figs. 3-5 for
symmetric modes. In Figs. 3-5, the phase velocity of mode 1 (antisymmetric) increases monotonically with
increasing values of wave number from C = 0 at zero wave number limit to C = Cy (Rayleigh wave speed,
which is 0.428 (dimensionless) in this case) as ¢ — oo, which is a characteristic flexural waves. Mode 2
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Fig. 5. Variation of phase velocity with wave number for the six lowest modes in GL theory of generalized thermoelasticity with
71 = 0.027, 79 = 0.025.

(antisymmetric), which is found to exist in thermoelasticity behaves like a mode 1, is a quasi-thermal
(thermal mode) but having phase velocity higher than that of mode 1 and less than that of quasi-longi-
tudinal (mode 3). The general shape of the dispersion curves of mode 1 (corresponding to first mode in
elasticity) and mode 3 (corresponding to second mode in elasticity) are same as those obtained by
Abubakar (1962).

Figs. 6-8 show the variation of attenuation constant (damping coefficients) with wave number for an-
tisymmetric and symmetric waves for different ratio of the thermal relaxation times. Each of the curves in
these figures corresponds to one of the branches in Figs. 3-5. It is observed from these figures that dissi-
pation (damping) is high for small wave numbers and it dips down to local minima at certain value of the
ratio 7, /7o (of the thermal relaxation times). From Figs. 3-5, it is apparent that attenuation constant for the



K L. Verma | International Journal of Solids and Structures 38 (2001) 8529-8546 8543

(2)

Antisymmetric Modes

Attenuation Constant (Non-dimensional)

\~ ~ . -
~ T~
— =~
. ; )
T T 1
9.6 12.8 16
Wavenumber (Non-dimensional)
(b)
. Symmetric Modes
s
E 127
.8
z
g R
b .
=
Q
&
g
2
S
~
E T~
§ — ; —_
g —_— =
<
N " )
t t 1
9.6 12.8 16

Wavenumber (Non-dimensional)

Fig. 6. Wave number dependence of thermoelastic attenuation constant in GL theory when 7; = 0.02 and 7, = 0.01 for the six lowest
modes (—: mode 1, - - -: mode 2, —: mode 3, ---: mode 4, —-—-: mode 5, — — —: mode 6).

quasi-elastic modes increases as the ratio decreases while the attenuation constant for quasi-thermal mode
increases, which agree with Tao and Prevost (1984).

The interaction of generalized thermoelastic waves in an infinite homogeneous transversely isotropic
plate has been investigated in GL theory. Both the dispersion and the attenuation characteristics have been
taken into consideration. The three motions namely, longitudinal, transverse and thermal of the medium
are found dispersive and coupled with each other due to the thermal and anisotropic effects. The phase
velocity and attenuation constant of the waves is get modified due to the thermal and anisotropic ef-
fects and is also influenced by the thermal relaxation time. Determination of thermoelastic surface waves
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Fig. 7. Wave number dependence of thermoelastic attenuation constant in GL theory when 7, = 0.025 and 7y = 0.02 for the six lowest
modes (—: mode 1, - - -: mode 2, —: mode 3, ---: mode 4, —-—-: mode 5, — — —: Mode 6).

speed is the byproduct of the analysis. Relevant results of previous investigations are deduced as special
cases.
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